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A simplified approach for estimating age-0 gizzard
shad prey supply and predator demand
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Abstract Gizzard shad, Dorosoma cepedianum (Lesueur), often compose a majority of the prey biomass in southern
US reservoirs. Previous studies suggest prey limitation frequently occurs in these systems, suggesting that fisheries
managers need tools to evaluate the production potential of the populations they manage. Bioenergetics modelling was
used to quantify the abundance of age-O gizzard shad necessary to sustain multiple piscivore species with diverse
growth rates, population sizes, mortality rates and diets. Gizzard shad biomass at the 50th percentile of published
values was insufficient to support seven piscivore species in 69% of the simulations, suggesting that above-average
prey biomass is required to support multiple piscivore populations at high abundance and growth rates. To help guide
management, estimates of the gizzard shad biomass needed to sustain piscivore communities are provided for
management situations in which coarse-scale (low, medium or high) growth, population size and percent of shad in

diet data are available.
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Introduction

Gizzard shad, Dorosoma cepedianum (Lesueur), are often
the most abundant species in the fish communities in
which they occur (Miranda 1983; Stein et al. 1995; Bach-
mann et al. 1996) and the predominant prey for piscivores
in lakes and reservoirs throughout the southern and mid-
western United States (Noble 1981; Storck 1986; Johnson
et al. 1988). Additionally, most abundant piscivores typi-
cally consume only gizzard shad < 100 mm TL, and even
the less abundant larger piscivores typically only consume
gizzard shad < 200 mm TL (Moore 1988; Dennerline &
Van Den Avyle 2000; Vatland & Budy 2007), even when
larger prey within the piscivores’ gape limits are abundant
(Bonds 2000). However, gizzard shad possess the
ability to grow rapidly to sizes exceeding 100 mm TL
(Tisa 1988; Dicenzo et al. 1996; Michaletz 1998a) or
even > 200 mm TL in some systems (Bodola 1955; Berry
1957; Schramm & Pugh 1996) during their first year of
life. As such, most piscivores only consume age-0 gizzard
shad, as older individuals typically exceed the predators’

preferred sizes (Johnson et al. 1988; Bonds 2000). Older
gizzard shad (especially those > 200 mm TL), therefore,
contribute to total forage biomass but are too large to con-
tribute to the ‘available prey’ biomass (Ney 1990; Cyter-
ski & Ney 2005). Furthermore, lakes that contain a high
biomass of large gizzard shad often have poor gizzard
shad recruitment (Smith 1959; Sammons et al. 1998;
Ostrand et al. 2001) further constraining the potential
prey available to the piscivore community as fewer age-0
fish are produced each year. Therefore, it is possible for a
system containing high gizzard shad biomass to be prey
limited if the gizzard shad size distribution is skewed
towards large individuals.

Most previous studies that have investigated predator—
prey balance concluded that prey biomass was equal to,
or only slightly greater than, predator demand (e.g. Cy-
terski et al. 2003; Irwin et al. 2003; Raborn et al. 2007;
Vatland et al. 2008), demonstrating that prey limitation
is likely a frequent occurence. Prey limitation may be
even more common than these studies suggest if a more
comprehensive or management-centric view of predator
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demand and prey availability is used (Ney 1990). Previ-
ous studies typically quantified predator demand by esti-
mating in sifu piscivore consumption, which was then
compared to available prey biomass or other estimates of
prey production in the system. From a fisheries manage-
ment perspective, predator demand is more correctly
defined as the amount of prey needed for predators to
survive and grow at optimal rates or at least rates neces-
sary to achieve management objectives (Ploskey & Jen-
kins 1982; Ney 1990). Using this management-centric
definition, predator demand is, by definition, predicted to
always be greater than actual consumption in prey-lim-
ited systems (i.e. systems where insufficient food limits
predator survival or growth; Ney 1990). Therefore, when
assessing prey sufficiency, it is necessary to have an
objective measure of predator demand (i.e. one based on
the prey abundance needed to achieve a management
goal) rather than simply assessing whether current con-
sumption is within the current prey production capacity
of a system. Further, even if predator demand can be
adequately defined and quantified relative to manage-
ment goals, it is difficult to quantify how much prey bio-
mass is needed to meet this demand. Some prey will die
from causes other than predation, prey abundance must
be high enough for predators to have reasonable encoun-
ter rates to find and consume prey, and some prey must
survive to provide reproduction in future years (Ney
1990). The ‘available prey’ will be assessed at a much
higher level than what is sustainably realistic if one or
more of these factors are not considered. Lastly, all pi-
scivores in a system must be considered simultaneously
to accurately assess whether prey abundance is adequate
to meet any species-specific management goal. Many
lakes in the USA contain six to nine piscivores. Pisci-
vore populations in multipiscivore fisheries are more
likely to have decreased growth and population size than
in fisheries with fewer predator species (Ploskey & Jen-
kins 1982). Although it can be quite time consuming to
collect data from all predator populations, it would
clearly provide an incomplete picture of total predator
demand if data from some piscivores were missing. A
tool that allows estimates of prey biomass required to
meet consumption for all piscivores in a system (with
population characteristics consistent with management
goals) without requiring arduous sampling would be
beneficial.

Prey limitation has important implications for the
management of sport fishes. For example, competition
for limited age-0 gizzard shad prey will result in
decreased predator population sizes, reduced growth or
both. A management objective of achieving increased
population size or growth rate of a single piscivore spe-
cies in a multiple piscivore system will likely come at
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the expense of reduced growth or abundance of other pi-
scivores sharing the prey resource within the system
(Ploskey & Jenkins 1982). These types of interspecific
interactions are even more likely to occur when manag-
ers introduce additional piscivores into the system
(Raborn et al. 2004; Schulze et al. 2006). Therefore, it
is critical that managers are able to quantify the predator
demand required by all piscivores, at the desired
population sizes and growth rates for each species, to
assess the sufficiency of the available prey relative to the
management goals.

The purpose of this study was to provide fisheries
managers with a tool to rapidly estimate the gizzard shad
abundance required to maintain multispecies fisheries in
southern US reservoirs. Data were compiled from previ-
ous studies that encompassed the range of predator pop-
ulation attributes (growth and mortality rates, population
size and percent of gizzard shad in their diet) and prey
supply typical of southern US reservoirs. These data
were then used to parameterise species-specific popula-
tion-level bioenergetics models and quantify the prey
supply necessary to meet predator demand (i.e. at the
community level by combining consumption of all pre-
dators) across a range of observed population parameters
for each piscivore in the community. Model outputs tab-
ulated via a simple coarse categorisation scheme are pro-
vided as a tool to help guide management decisions for
multispecies sport fisheries in southern US reservoirs.

Methods

Modelling approach

Predator demand of age-0 gizzard shad was determined
for seven piscivore species commonly found within
southeastern US reservoirs when the populations had dif-
ferent levels of predator growth rates, mortality rates,
population sizes and proportion of gizzard shad occur-
rence in piscivore diets (levels of population characteris-
tics came from the published literature). Specifically,
bioenergetics models were used to estimate age-specific
consumption required to grow at scenario-specific rates
for largemouth bass, Micropterus salmoides (Lacepede),
white bass, Morone chrysops (Rafinesque), flathead cat-
fish, Pylodictis olivaris (Rafinesque), blue catfish, Ictalu-
rus furcatus (Lesueur), white crappie, Pomoxis annularis
Rafinesque, large moronids [striped bass, M. saxatilis
(Walbaum) or hybrid striped bass M. saxatilis x
M. chrysops; hereafter referred to as striped bass] and
percids [walleye, Sander vitreus (Mitchill) or saugeye
S. vitreus x S. canadensis (Griffith & Smith); hereafter
referred to as saugeye]. Individual consumption estimates
were then scaled to population-level consumption
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estimates for each piscivore species via extrapolation to a
stable age distribution based on scenario-specific popula-
tion size and annual mortality schedule. Total consump-
tion of age-O gizzard shad by multispecies piscivore
communities was then determined via summation across
ages and predator species. As such, it was assumed that
the addition of a piscivore species to a reservoir would
result in additive consumptive demand, which is likely
conservative with respect to the prey biomass required to
sustain predator populations as interference competition
could occur resulting in reduced growth or population size
of piscivores rather than gizzard shad consumption to the
full extent predicted by the model. Total age-0 gizzard
shad demand was determined for all possible combina-
tions of three levels (i.e. low, medium, high) of growth
rates, mortality rates, population sizes and proportion of
gizzard shad in the diet for each piscivore species. Thus,
the generated model output provided estimates of prey
demand under a wide range of population attributes that
have been observed in the literature for each species.

Modelling was accomplished via Visual Basic for
Applications (VBA) in Microsoft Excel using the avail-
able bioenergetics models for largemouth bass (Rice
et al. 1983; energy density 4186 J g~ 1), saugeye [Zwei-
fel er al. 2010; energy density 4186 J g~' (Kitchell
et al. 1977)], flathead catfish (Roell & Orth 1993;
energy density 4184 J g='), striped bass (Hartman &
Brandt 1995; energy density 6488 J g~') and white
crappie (Zweifel 2000; energy density 4184 J g ). Bio-
energetics models were not available for blue catfish or
white bass; parameters from Blanc and Margraf (2002)
developed for channel catfish were used to model blue
catfish (energy density = 5437 J g~ '; Eggleton & Sch-
ramm 2002), and the striped bass model was used as a
surrogate for white bass.

Modelling scenarios

Literature values (Tables S1-S8) were used to determine
low, medium and high parameter values for each of the
four input parameters for the piscivores: growth (in g
mass, derived from mean length-at-age and reported
weight-length relationships), mortality, initial population
size and proportion of gizzard shad by weight in their
diet. Piscivore annual mortality rates were assumed con-
stant across ages given that estimates were typically
derived from catch-curve analyses of age-1+ fish. Age-
specific estimates were used for all other parameters.
With the exception of diet proportions (see below), low,
medium and high parameter values were represented by
the 10th, 50th (median) and 90th percentile of all litera-
ture values, respectively. The 10th and 90th percentile
estimates were chosen to ensure that the simulations

would be applicable to the majority of systems through-
out the southeastern United States without being influ-
enced by extreme outliers. Only published data from
lentic populations were used to derive estimates.

Diet data were not as common in the literature as
other parameters (Supplementary Data Table S1), such
that it was inappropriate to use the 10th and 90th per-
centiles for this parameter. Rather, the mean from the
two lowest and two highest published values of the pro-
portion of gizzard shad consumed for each age class was
used to represent low and high proportions, respectively;
the medium proportion was calculated as described
above (the median published values). Length-specific
piscivore diets were assigned to age classes based on age-
length relationships when diets were not reported accord-
ing to age classes in the literature. The percentages for
alternative prey types (i.e. diet items other than gizzard
shad) were calculated by age class using the same proce-
dure. Because averaging diet percentages across studies
led to cases where the total diet did not sum exactly to
100%, the unadjusted mean proportion of gizzard shad
was used and the relative differences among the mean diet
proportions for alternative prey types were used to
proportionally divide the remaining non-gizzard shad
portion of the diet. Diet categories and the associated
energy densities used in the bioenergetics models included
gizzard shad = 5105 J g~', other fish = 4602 J g ',
insects = 3138 J g~ ', crayfish = 4393 J g, zooplankton =
1987 J g=' (Pope et al. 2001) and freshwater mussels =
264 J g~ ' (Eggleton & Schramm 2004).

All possible combinations of the low, medium and
high levels for each of the four input parameters were
modelled for each age class of each species (3* = 81
simulations per cohort). Models were run using a start
date of 15 June for all species, which is the approximate
time of year when age-0 gizzard shad are large enough
that they begin to appear in piscivore diets (Houser &
Netsch 1971; Buynak et al. 1992; Michaletz 1997).

All modelling scenarios were modelled at three tem-
perature regimes representative of the northern latitude
(coolest temperatures), central latitude (warmer tempera-
tures) and southern latitude (warmest temperatures) res-
ervoirs in the southeastern United States (Fig. 1). The
northern latitude temperature regime was based on tem-
perature data recorded from Kentucky Lake, KY (1 Jan-
uvary 2008-30 December 2008; E. Ganus, Tennessee
Wildlife Resource Agency, unpublished data). The cen-
tral latitude temperature regime was based on tempera-
ture data collected from Possum Kingdom Reservoir, TX
(1 January 2007-30 December 2007; J. Sullivan, Texas
Commission on Environmental Quality, unpublished
data). The southern latitude temperature regime was
based on temperature data collected from Lake
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Figure 1. Temperature regimes used for bioenergetic modelling of
southern US reservoir temperature conditions. Southern latitude temper-
ature regime is based on temperatures logged from Lake Buchanan,
TX; central latitude temperature regime is based on temperatures
logged from Possum Kingdom Reservoir, TX; and northern latitude
temperature regime is based on temperatures logged from Kentucky
Lake, KY.

Buchanan, TX (15 June 2010-14 June 2011; K. Bodine,
Texas Parks and Wildlife Department, unpublished data).
Given that gizzard shad and other lentic fishes are
known to congregate between 0 and 4 m in depth (Byrd
1952; Overholtz et al. 1977; Kubecka & Wittingerova
1998), water temperatures recorded via temperature log-
gers suspended at a mean depth of 1.79 + 0.26 m were
used for the bioenergetics modelling.

Conversion of biomass to numbers of gizzard shad
required to sustain piscivore demand

To compare predator consumption with gizzard shad
abundances, the number of shad required to sustainably
meet predator demand on simulation day 60 (Ney 1981)
was calculated by accounting for non-predation sources of
mortality (from published values) and the number of sur-
viving gizzard shad required to sustain age-O production
through recruitment (calculation details given below).
Simulation day 60 corresponds to 15 August, which is
typically when gizzard shad are sampled (Michaletz
1998b; Cyterski et al. 2003; Hale ef al. 2008) and is,
therefore, germane to the time period in which realistic
management objectives could be assessed.

To produce this day-60 benchmark, daily consumption
of gizzard shad from the predator bioenergetics models
(in grams) was first converted to numbers of individuals
using the mean daily mass of gizzard shad estimated for
each day by a bioenergetics model (Sebring 2002). Low,
medium and high gizzard shad growth rates (10th
percentile, median and 90th percentile of published val-
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ues) were modelled. A start mass of 0.166 g [20 mm
standard length, approximate size when predators begin
using gizzard shad as prey (Hale 1996; Michaletz 1997,
Dennerline & Van Den Avyle 2000)] was used in all
cases, and end masses of 33.4 g (low), 60.5 g (medium)
and 96.0 g (high) were used to model low, medium and
high gizzard shad growth rates (Bodola 1955; Pierce
1977; Schramm & Pugh 1996; Cyterski er al. 2003).
Next, the number of gizzard shad was adjusted to
account for annual non-predation mortality. Published
annual mortality rates (A) for age-1+ individuals (which
experience very limited predation mortality; Hale 1996;
Michaletz 1997) were used as low (0.55), medium (0.70)
and high (0.85) non-predation mortality values (Tisa
1988; Michaletz 1998a; Clayton & Maceina 2002).
Finally, the number of additional age-O gizzard shad
required to sustain the population through reproduction
was accounted for using established population equa-
tions. Specifically, the net reproductive rate (R;) was
calculated as follows:

k

RO = Z(lx*mx)a

x=0

where [, is the probability of surviving from time O to
time x [calculated as S, where S = annualised survival
(§ = 1—A) using the above mortality rates], m, is the
per-capita birth rate (mean number of offspring produced
per individual during year x, three values were used as
explained below), and k is the maximum lifespan (which
was set at 6 years; Schramm & Pugh 1996; Clayton &
Maceina 2002; Cyterski et al. 2003). This was modelled
using low (175.1), medium (233.5) and high (350.3) giz-
zard shad per-capita birth rates [medium value from Cy-
terski et al. (2003), low and high values represent 50%
reduction or increase of this value]. The resulting R, val-
ues were used to calculate the number of gizzard shad
that must survive to sustain the population through
future reproduction (N,) given the number of individuals
that will be consumed by predators (V.) and the annua-
lised survival rate (S) as follows:

1\

<1 Ro*sz) 1]’

which is a finite solution to the convergent infinite series
of the sum of reproductive output from all future cohorts
(additional explanation and derivation details provided in
Evans 2009). Therefore, the population must have
N. + N = Ny age-0 gizzard shad produced on May
15th to sustainably meet the predator demand (N,).
These adjustments could not be performed for total prey
consumption because the other prey types consumed do

Ny = Nc*
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not have adequate published growth, mortality and
fecundity data that are required for the analysis. Other
prey types could be adjusted for specific systems with
knowledge of the required parameters.

Modelling piscivore community consumption

Model output from the 81 simulation scenarios (i.e. com-
binations of piscivore population characteristics) for each
of the seven species was converted to units of number
of gizzard shad required for sustainability on simulation
day 60. This was carried out under 27 different combina-
tions of gizzard shad population parameters [three levels
of gizzard shad growth, three levels of non-predation
mortality and reproductive needs (at three per-capita
birth rates), resulting in 2187 total simulations per spe-
cies (81 piscivore population scenarios x 27 prey popu-
lation scenarios)]. It was not feasible to calculate all
possible combinations of total gizzard shad consumed by
all seven species in the piscivore community because the
combinations were too numerous (21877 =239 x 10®
combinations). Therefore, 100 000 randomly selected
Monte Carlo simulations were used. Each Monte Carlo
simulation was conducted by randomly selecting one of
the 81 simulations for each of the seven piscivore spe-
cies and summing the estimated biomass consumed by
these seven piscivores over the year. One set of gizzard
shad population characteristics was then randomly
selected and used to convert the total predator consump-
tion estimates to units of number of gizzard shad
required for sustainability on simulation day 60. These
values were converted to kg ha~! using the estimated
mean daily masses for gizzard shad from day 60 and
were compared with published age-0 gizzard shad bio-
masses estimated in late summer (July-August; Olmstead
1974; Johnson et al. 1988; Aumen et al. 1992; Micha-
letz 1998b; Cyterski et al. 2003; Hale et al. 2008). The
impact of the three levels of gizzard shad growth rates,
mortality rates and per-capita birth rates on the amount
of gizzard shad required to sustain piscivores was com-
pared via Kolmogorov—Smirnov sensitivity analysis
(o = 0.05).

Accuracy of coarse-scale models

The accuracy of the low, medium and high parameterisa-
tion system at estimating predator demand for age-0 giz-
zard shad was evaluated by comparing estimates
obtained from this study’s model (Table 1) with pub-
lished predator demand estimates from studies that used
detailed parameterisation techniques. Piscivore popula-
tion data from Norris Reservoir, TN [largemouth bass,
striped bass and walleye (Raborn et al. 2002, 2007)] and

Smith Mountain Lake, VA [largemouth bass and striped
bass (Cyterski er al. 2002)] were first assigned to low,
medium or high categories (growth — mortality — initial
population size — percent by weight of gizzard shad in
the diet) based on whether the actual measured parame-
ter was closest to the 10th percentile, median or 90th
percentile of published values (see Supplementary Data).
The corresponding model output presented in Table 1
was then used to estimate total annual consumption of
age-0 gizzard shad for these real populations. Lastly,
these coarse-parameter estimates (from Table 1) were
compared with the more detailed estimates reported in
the respective studies to determine how much error is
introduced when low, medium or high parameterisation
was used instead of more precisely measured parameters.

Results

Single-species bioenergetics models estimated different
amounts of gizzard shad consumption when using the
same input parameters for all species (Fig. 2). Tempera-
ture effects on consumption were minor for all piscivore
species relative to the differences observed among spe-
cies. The relative ranking (lowest to highest total con-
sumed gizzard shad biomass) of the 81 combinations of
input parameters varied among species, but the differ-
ences in ranked order were generally small between spe-
cies (i.e. certain combinations were always ranked near
the top or bottom of the list even if the exact order var-
ied among species). Although the model results suggest
flathead catfish were the most energetically efficient spe-
cies (the modelled fish grew more per gram of gizzard
shad consumed) and striped bass were the least efficient
(Fig. 2), the differences in population parameters among
species (i.e. based on the range of values reported in the
literature) frequently were large enough to overcome dif-
ferences in species-specific energetic efficiency, such that
the species that had the highest or lowest consumption
of gizzard shad for a given simulation was highly vari-
able (Table 1). Due to the similarity of results between
the three temperature regimes, only the central latitude
temperature regimes estimates are reported hereafter.

The estimated biomass of gizzard shad on simulation
day 60 required to meet predator demand for the remain-
der of the simulated year (accounting for non-predation
mortality and required reproductive sustainability) varied
from < 1 to > 100 kg ha~' depending on species and
the chosen population characteristics (Table 1). Sensitiv-
ity analysis indicated that of the three gizzard shad pop-
ulation parameters (mortality, growth rate and
fecundity), only non-predation mortality significantly
(P <£0.5) affected the day 60 gizzard shad biomass esti-
mates (Fig. 3). Lower age-0 gizzard shad biomass was
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GIZZARD SHAD PREY SUPPLY AND PREDATOR DEMAND

needed to meet predator demand on day 60 when mor-
tality was low. Therefore, for each simulation, the nine
estimates (three growth rates x three fecundity values)
for the low, medium and high gizzard shad non-preda-
tion mortalities were averaged. The resulting averages
represent low, medium and high categories of gizzard
shad productivity.

Monte Carlo simulations indicated that predator
demand frequently exceeded sustainable gizzard shad
abundance (Fig. 4). The gizzard shad biomass required
to support seven piscivores exceeded the 50th percentile
of published age-0 gizzard shad biomass in 69% of the
simulations. Monte Carlo simulations exceeded the 95th
percentile of published gizzard shad abundance in 18%
of the simulations.

Comparisons with detailed estimates

Estimates of annual consumption for individual piscivores
based on the simplified low, medium or high categorisa-
tion system were similar to the more detailed estimated
values reported for Norris Reservoir, TN and Smith
Mountain Lake, VA (Table 2). Estimates produced by the
three-category method were all within 4 kg ha™' when
study populations could be assigned to a single simulation
category and between 0 and 21 kg ha~' when study
parameters fell midway between categories. These dis-
crepancies are relatively small compared with the range of
predator demand values resulting from different piscivore
population characteristics (e.g. Table 1).

Discussion

The simple low-medium-high categorisation system pro-
vided estimates of sustainable predator demand for age-0
gizzard shad similar to more refined estimates for two
different reservoirs. Although additional validation is
warranted, the similarity in estimates between the current
study and these two previous studies suggests that the
outputs from this study (Table 1) provide fisheries man-
agers with a tool that can be used for rapid estimation of
the gizzard shad biomass required to sustain a piscivore
community with specific population attributes (i.e. meet-
ing certain management objectives for growth rate and
population size). This tool does not require detailed
piscivore population measurements; rather, selecting low,
medium or high for each parameter to reflect whether
the parameter is likely to be closest to the 10th, 50th or
90th percentile for the parameter is sufficient (benchmark
values of each parameter level for all species are pro-
vided in Tables S2-S8). Because of the approach used,
the model output is not constrained by the prey abun-
dance of the system but simply calculates the amount of
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Figure 2. Consumption estimates of age-O gizzard shad from the bioenergetics models for blue catfish, flathead catfish, largemouth bass, saugeye,
striped bass and white crappie under southern latitude (Lake Buchanan, TX; short dash line), central latitude (Possum Kingdom Reservoir, TX; long
dash line) and northern latitude (Kentucky Lake, KY; solid line) temperature regimes from the southern USA. All species were modelled with start-
ing mass of individuals = 100 g, population size = 1 individual, no mortality and diet = 100% gizzard shad. White bass follows same trajectory as
striped bass.

age-0 gizzard shad that must be consumed by piscivores current demand of their system but also to see what giz-
to maintain the species with the selected population attri- zard shad biomass levels would be needed to meet hypo-
butes. This allows managers not only to assess the thetical population characteristics related to management

© 2014 John Wiley & Sons Ltd
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Figure 3. The frequency (from 100 000 warm-temperature bioenerget-
ics Monte Carlo simulations) of age-0 gizzard shad biomasses (kg ha'
on simulation day 60) required to meet predator demand parameterized
under different levels of gizzard shad fecundity, growth and non-preda-
tion mortality.

goals. However, managers should be aware that the
model results are for systems in prey supply equilibrium
(i.e. modelled under the assumption that gizzard shad
maintain steady-state population abundances via stable
reproduction, recruitment and growth).

The Monte Carlo simulation results quantitatively sup-
port the traditional logic (Axon & Whitehurst 1985; Ney
1990; Michaletz 1997) that piscivore populations in sys-
tems with average or below-average age-O gizzard shad

© 2014 John Wiley & Sons Ltd
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Figure 4. Percent of warm-temperature-regime Monte Carlo simula-
tions in which age-0 gizzard shad biomass was insufficient to meet
predator demand at different published late summer age-O gizzard shad
abundances (vertical dotted lines). Numbers associated with the lines
indicate the number of piscivores.

Table 2. Comparison of estimated annual consumption of gizzard
shad (kg ha') in the current study with those estimated in Norris Res-
ervoir, TN (Raborn ef al. 2002, 2007) and Smith Mountain Lake, VA
(Cyterski et al. 2002). Population parameters were categorised from
data provided in referenced publications to match the model output
ranking system where parameters were numerically coded in order as
growth-mortality-initial population size-percent by weight gizzard shad;
low (1), medium (2) and high (3) parameters corresponded with the
10th percentile, median and 90th percentile of published values for
each piscivore species (see Tables S2-S8 for published values that
correspond with each parameter level for each species)

Original study Current study

consumption Input consumption
estimate parameter estimate
(kg ha ) coding (kg ha ")
Norris Reservoir, TN
Largemouth bass 23 2-3-3-3 19
Striped bass 49 3-3-2-3 46
Walleye 38 3-1-1-3 38
Smith Mountain Lake, VA
Largemouth bass 23 3-2-2-2 19
Striped bass 49 1-1-2-1-2-1-2-1 2849

abundances are prey limited as a consequence of inade-
quate age-0 gizzard shad abundance. Only when age-0
gizzard shad biomass was above the 75th percentile did
all seven piscivores have a > 50% probability of not
being gizzard shad prey resource limited. This was true
despite accounting for alternative prey usage. Therefore,
managers should have realistic expectations in systems
with many piscivores and should only consider adding
new piscivores (e.g. stocking non-reproducing species
such as hybrid striped bass or saugeye) in systems with
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high prey biomasses [i.e. those exceeding the 75th percen-
tile of published gizzard shad abundances (145 kg ha™")].

Estimates of prey demand from this study (Table 1)
should be considered minimum requirements; actual prey
demand could be higher in some situations. The model-
ling approach described in this study used the range of
published population attributes to estimate consumption.
Therefore, even the highest consumption estimates
would fall short of the predator demand (and growth
potential) of unconstrained feeding. The model parame-
ters corresponding to the greatest predator demands are
based on the 90th percentile of published values. There-
fore, some populations could exist that would exceed the
highest estimates. Second, predation by non-game spe-
cies (which were not modelled due to insufficient data)
would increase total piscivore demand. However, the
consumption by non-game piscivores should be low given
their low biomass in most systems [e.g. of 72 lake and
year combinations sampled by the Oklahoma Department
of Wildlife Conservation (ODWC) from 2009 to 2012,
only 2.3% of the piscivorous fish species captured in gill-
nets were non-game species; K. Kuklinski, ODWC,
unpublished data]. Therefore, managers should recognise
the total predator demand estimates generated using
Table 1 are approximate and may underestimate the prey
abundance required in their system, especially if their sys-
tem has unusually large or fast-growing populations or a
high non-game piscivore biomass.

Practitioners using the model proposed in this study
should also keep in mind that this model is reductionistic
in its approach, but natural systems have complex inter-
actions and feedback loops that could lead to unexpected
changes. For example, if the diversity of piscivores in a
system is altered (e.g. stocking of hybrid striped bass
and saugeye is suspended), the proportion of gizzard
shad in the diet of the remaining piscivores may change
if competitive release allows for an expansion of the rea-
lised niche of one or more remaining piscivore. Addi-
tionally, a change in one model parameter for a given
species may result in alteration to other model parame-
ters for that population. For example, increasing the pop-
ulation size may result in slowed growth or higher
mortality for a population, even if sufficient prey
resources exist to meet the higher prey demand, if other
resources became the limiting factor for the population.
The model parameters are derived from a large number
of different populations encompassing a wide range of
environmental conditions and fish communities. As such,
the parameters probably encompass the majority of con-
ditions under which the model results could be applied.
However, if the model is used to predict future prey con-
sumption that might result from a possible management
change, the model cannot provide reliable results unless

the parameter values selected for each piscivore species
are end values expected to result from the management
change.

Responses to
implications

insufficient prey and management

Piscivores likely respond dynamically to insufficient prey
resources in lakes depending on the extent and duration
of prey resource limitation. Piscivores can theoretically
respond via long-term responses such as niche partition-
ing. However, this type of response typically occurs over
evolutionary time intervals that exceed the duration of
most sport fish management regulations and frequently
the service lifetimes of reservoirs (Moermond 1979; Ra-
born et al. 2007). Moreover, partitioning of gizzard shad
prey is further doubtful due to the lack of spatial and
temporal separation between gizzard shad and piscivores
in reservoirs (Jester & Jensen 1972; Downey & Toetz
1983; Cyterski & Ney 2005). Although piscivores may
be spatially separated by habitat preferences, gizzard
shad populations likely roam throughout reservoirs as
they are commonly found in littoral (Gelwick & Mat-
thews 1990; Bailey & Gerow 2005) as well as pelagic
habitat (Degan & Wilson 1995; Gido 2001). Spatial sep-
aration of piscivores, therefore, does not partition gizzard
shad prey. Piscivores are more likely to respond via
short-term responses including reduced consumption
(Rice & Cochran 1984) and diet shifts (Jenkins 1979;
Venturelli & Tonn 2006), usually leading to decreased
growth (Muth & Wolfert 1986; Weatherley 1990) or
decreased population abundance and biomass (Ploskey &
Jenkins 1982). Thus, short-term responses influence sport
fish populations in ways that are typically counterproduc-
tive to management objectives. Managers must, therefore,
set achievable management objectives that are consistent
with the prey availability of the systems they manage and
be willing to alter their management objectives and strate-
gies if necessary. The model outputs (Table 1) provide
fisheries managers with benchmarks that aid in evaluating
the sufficiency of prey (standing stock in August) to
support increased piscivore production.

Alternative prey use

Simulations were performed in accordance with the pre-
mise that clupeids, particularly gizzard shad, often account
for the majority of the prey base in US lakes (Noble 1981;
Storck 1986; Johnson et al. 1988). Many pelagic pisci-
vore species feed almost exclusively on age-0 gizzard
shad or other clupeids of similar size, as few alternative
prey fishes occur in the pelagic habitat (Cyterski et al.
2003; Raborn et al. 2007), and gizzard shad constitute a
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large proportion (typically over 50%) of many littoral pi-
scivores’ diets [Horton & Gilliland 1990; Pope et al.
2001; Tables S2—-S8 and the citations therein (Table S1)],
suggesting that gizzard shad prey abundance is a primary
limiting factor to piscivore growth. However, the bioener-
getics approach used in this study did account for alterna-
tive prey use via the input parameter for percent gizzard
shad in the piscivore diet. Therefore, some proportion of
alternative prey were being eaten by the piscivores in the
simulations, so the gizzard shad consumption estimates
assume alternative prey are being eaten to some extent at
the same time gizzard shad are being consumed. Because
of this, the output (Table 1) assumes there will always be
sufficient biomass of alternative prey types to meet preda-
tor demand. Therefore, in systems with limited alternative
prey, managers should use the highest level for the per-
cent-of-gizzard-shad-in-the-diet parameter to minimise the
chance of forage depletion.

Temperature effects

The effects of temperature on prey demand were small
relative to changes in piscivore population parameters
for a given species or difference in consumption esti-
mates among species. The temperature regimes were
chosen because of their relative latitude, spanning much
of the perceived climate variation within the southern
United States. However, the mean of daily temperature
differences between the warmest and coolest temperature
regime, on any given simulation day, was only 4.3 °C; a
magnitude of differences in temperatures that is, espe-
cially at moderate temperatures, not expected to influ-
ence bioenergetics estimates as much as more extreme
temperature differences (Bajer er al. 2004; Petersen &
Paukert 2005). This suggests the results should be appli-
cable to a wide geographical range and should only be
moderately affected by interannual differences in temper-
ature cycles. This is further supported by the accuracy
with which the simplified categorisation system used in
this study (low, medium or high for each parameter)
matched more detailed annual piscivore consumption
data without using the actual detailed temperature regime
from the studied systems. Additionally, the relatively
small effects of temperature on consumption estimates
suggest that the predictions from the current study
should still be realistic even if some fish spend most of
their time at deeper depths than those where the mod-
elled temperature profiles were measured. Most southern
reservoirs only have a few Celsius degree difference
from the surface to the thermocline (e.g. OWRB 2007),
which would produce only relatively small effects on
consumption compared with the effects of different
population parameters (e.g. Table 1).
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Conclusions and future research needs

This study combined bioenergetics and prey population
modelling to provide a simple tool that estimates preda-
tor demand in southern US reservoirs. Using simple cat-
egorical descriptors (i.e. low, medium or high) of
growth, mortality, population size and percent of gizzard
shad in the diet of each species of interest, biologists
can use the model output to estimate total predator
demand by piscivore communities composed of any
combination of the piscivores studied. In some cases,
practitioners could estimate predator demand by addi-
tional species using the model output of a closely related
species, assuming they are willing to accept the potential
trade-off in the accuracy of the estimate; for example,
black crappie, Pomoxis nigromaculatus (Lesueur), could
not be modelled in the current study because there is no
published bioenergetics model for this species; the out-
put for white crappie provides estimates that probably
are similar to what might be consumed by a black crap-
pie population, but this remains untested. This bioener-
getic estimate of predator demand can then be compared
to measured gizzard shad biomass in late summer to
determine whether prey limitation exists under the
assumed, and modelled, population characteristics for
each piscivore. The results of the Monte Carlo simula-
tion using these outputs suggested a high probability that
prey availability limits piscivore growth in most reser-
voirs, which is consistent with the findings of field-based
studies (Hale 1996; Michaletz 1997; Venturelli & Tonn
2006). Future research on factors affecting gizzard shad
population dynamics is needed to enable age-0 prey pro-
duction and management strategies to be developed that
complement the sport fish focused management strate-
gies currently being used.
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